
VUD: Vanne 2 voies à brides, PN 6 (pn.)

Votre atout en matière d'efficacité énergétique

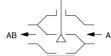
Utilisation efficace dans les régulations continues

Caractéristiques

- Régulation continue de l'eau froide et de l'eau chaude en circuits fermés1)
- Qualité de l'eau selon VDI 2035
- En combinaison avec les servomoteurs AVP 242 comme appareil de réglage.
- · Ne convient pas à la vapeur ou à l'eau potable
- · Vanne avec raccord à brides selon EN 1092-2, joint d'étanchéité forme B
- · Vanne de régulation sans graisse silicone, vernie en noir
- · Vanne fermée lorsque la tige est sortie
- · Fermeture contre la pression
- · Corps et siège de vanne en fonte grise

Caractéristiques techniques

Valeurs caractéristiques				
	Pression nominale	PN 6		
	Raccordement	Bride selon EN 1092-2, forme B		
	Courbe caractéristique de la vanne,	Linéaire		
	voie de régulation F200			
	Courbe caractéristique de la vanne, voie de régulation F300	Exponentielle		
	Rapport de réglage de la vanne	> 50:1		
	Presse-étoupe	2 joints toriques en EPDM		
	Taux de fuite	≤ 0,05 % de la valeur k _{vs}		
	Course de la vanne	8 mm		
Conditions ambiantes				
	Température de service ²⁾	–10150 °C		
	Pression de service	Jusqu'à 120 °C, 6 bar		
		À 150 °C, 5,4 bar		
		Peut être interpolé linéairement entre 120 °C et 150 °C		
Normes, directives				
	Données de pression et de température	EN 764, EN 1333		
	Valeurs caractéristiques des fluides	EN 60534 (page 3)		
	Directive équipements sous pression	97/23/CE (groupe de fluide II) Pas de marquage CE article 3.3		


Aperçu des types						
Туре	Diamètre nominal	Valeur k _{vs}	Poids			
VUD015F320	DN 15	1,6 m³/h	3,2 kg			
VUD015F310	DN 15	2,5 m³/h	3,2 kg			
VUD015F300	DN 15	4 m³/h	3,2 kg			
VUD020F300	DN 20	6,3 m³/h	4,1 kg			
VUD025F300	DN 25	10 m³/h	4,7 kg			
VUD032F300	DN 32	16 m³/h	7,3 kg			
VUD040F300	DN 40	22 m³/h	8,6 kg			
VUD050F300	DN 50	28 m³/h	11,2 kg			
VUD050F200	DN 50	40 m³/h	11,2 kg			

¹⁾ L'humidité de l'air ne doit pas dépasser 75%

VUD032F300

Températures inférieures à 0 °C : utiliser un chauffage de presse-étoupe. Températures supérieures à 100 °C : utiliser une pièce intermédiaire (accessoire)

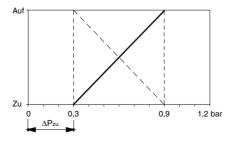
Accessoires	
Туре	Description
0372240001	Réglage manuel pour vannes avec course de 8 mm
0372249001	Pièce intermédiaire nécessaire à une température de fluide de 100130 °C (recommandée à une température de < 10 °C) DN 1550
0372249002	Pièce intermédiaire nécessaire pour températures de fluide de 130 à 150 °C, DN 15 à 50
0378284100	Chauffage presse-étoupe 230V~, 15 W pour fluide en dessous de 0 °C
0378284102	Chauffage presse-étoupe 24V~, 15 W pour fluide en dessous de 0 °C
0378368001	Presse-étoupe de rechange complet pour DN 1550

Combinaison VUD avec servomoteur pneumatique

- i Prestation de garantie : Les données techniques et différences de pression indiquées ne sont applicables que lorsque les pièces sont utilisées en combinaison avec des servomoteurs SAUTER. L'utilisation de servomoteurs d'autres fournisseurs annulera toute prestation de garantie.
- **i** Définition pour Δp_s : perte de pression max. adm. en cas de panne (rupture de tuyauterie en aval de la vanne) pour laquelle le servomoteur ferme la vanne de façon sûre à l'aide d'un ressort de rappel.
- i Définition pour Δp_{max} : perte de pression max. adm. en mode de régulation pour laquelle le servomoteur peut encore ouvrir et fermer la vanne de façon sûre.
- Le temps de course se rapporte au débit d'air centair (400 I_n/h) et à un câble de raccordement de 20 m de longueur et 4 mm de diamètre.

Combinaison VUD avec servomoteur pneumatique AVP 242

Servomoteur	AVP242F001
Pression adm.	≤ 6 bar
Pstat	2 0 Dai
Temps de course	8 s

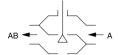

∆p [bar]

Fermant contre la pression	Δp_{max}	Δp_s		
VUD015F320 VUD015F310 VUD015F300 VUD020F300 VUD025F300 VUD032F300	6,0	6,0		
VUD040F300	4,0	4,0		
VUD050F300 VUD050F200	2,5	2,5		

Pas utilisable pour une fermeture avec la pression

Courbe caractéristique course/pression (avec vanne montée), courbe caractéristique non réglable :

AVP242


Températures supérieures à 100 °C : accessoires nécessaires

= fermé sans pression (fonctionnement E) ----- = ouvert sans pression (fonctionnement A) Séquences possibles avec XSP31

Description du fonctionnement

La vanne peut être commandée avec un servomoteur pneumatique dans la position intermédiaire souhaitée. Lorsque la tige de la vanne est sortie, la voie de régulation de la vanne est fermée. Les vannes ne peuvent être utilisées qu'avec le procédé de fermeture « contre la pression ». Il faut respecter le sens du débit indiqué sur la vanne. Le « procédé de fermeture avec la pression » n'est pas autorisé pour les servomoteurs pneumatiques car cela entraînerait des coups de bélier. Les valeurs caractéristiques d'écoulement correspondent à la norme EN 60534.

Fermeture contre la pression

Les vannes de régulation se distinguent par une fiabilité et une précision élevées et contribuent de manière décisive à une régulation respectueuse de l'environnement. Elles satisfont des exigences élevées telles que les fonctions de sécurité, la maîtrise des pressions différentielles, la régulation de la température de fluide, la réalisation de la fonction de fermeture, et tout cela de manière silencieuse.

La tige de la vanne est raccordée automatiquement et fermement à la tige du servomoteur. La soupape de vanne en laiton régule un débit exponentiel dans la voie de régulation. L'étanchéité de cette vanne est assurée par le siège usiné dans le corps.

Le presse-étoupe est exempt de maintenance. Il se compose d'un corps en laiton, de 2 joints toriques, d'un racleur et d'une réserve de graisse. Cette graisse est exempte de silicone. Il ne faut pas utiliser de lubrifiant à base de silicone pour la tige de la vanne. La réserve de graisse empêche que des particules présentes dans le fluide n'entrent en contact avec le joint torique supérieur.

Utilisation conforme

Ce produit est conçu uniquement pour l'emploi prévu par le fabricant, décrit à la section « Description du fonctionnement ».

Le respect de toutes les instructions correspondantes du produit en fait également partie. Les modifications ou transformations ne sont pas autorisées.

Remarques concernant l'étude du projet et le montage

Le servomoteur est placé directement sur la vanne et fixé avec des vis. La connexion du servomoteur à la tige de la vanne se fait automatiquement. Le réglage du point de fermeture doit être effectué conformément aux instructions de montage (MV 506012 AVP 242).

Données techniques complémentaires

Informations techniques			
Données de pression et de température	EN 764, EN 1333		
Valeurs caractéristiques d'écoulement	VDI/VDE 2173		
Réglette SAUTER pour le dimensionnement des vannes	P100013496		
Valeurs caractéristiques, instructions d'installation, régulation, généralités	Prescriptions EN, DIN, AD, TRD et OLAA en vigueur		
Instructions de montage :			
DN 1550	MV 506008		
AVP 242 F001	MV 506041		
Déclaration matériaux et environnement	MD 76.110		

Position de montage

L'appareil de réglage peut être monté dans une position quelconque. Toutefois, la position de montage suspendue n'est pas recommandée. Veillez à ce qu'un condensat, des gouttes d'eau, etc. ne pénètrent pas dans le servomoteur. Dans une position de montage horizontale, sans support de servomoteur, le poids maximal admissible sur la vanne est de 25 kg.

Lors du montage du servomoteur sur la vanne, il faut veiller à ce que la soupape de vanne ne tourne

> pas sur le siège (endommagement de la surface d'étanchéité). L'isolation de la vanne doit s'arrêter à la bride de raccordement du servomoteur.

Utilisation avec de la vapeur

Les vannes ne doivent pas être utilisées pour des applications avec de la vapeur.

Utilisation avec de l'eau

Afin d'assurer la rétention des impuretés dans l'eau (p. ex. boulettes de soudure, particules de rouille, etc.) et d'éviter que le joint de la tige ne soit endommagé, nous recommandons le montage de filtres, p. ex. par étage ou par colonne. Les exigences relatives à la qualité de l'eau sont celles de la norme VDI 2035. En cas d'utilisation d'un additif dans l'eau, la compatibilité des matériaux doit être vérifiée avec le fabricant du fluide. La liste des matériaux indiquée ci-dessous peut être utilisée à cette fin. Nous recommandons en cas d'utilisation de glycol de choisir une concentration comprise entre 20 % et 55%.

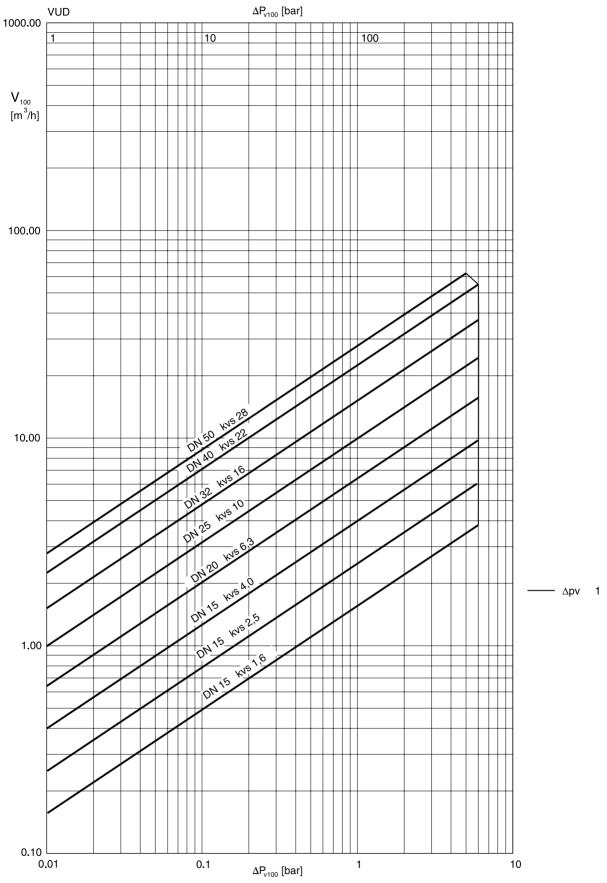
Autres remarques concernant le système hydraulique et les bruits dans les installations

Les vannes peuvent être utilisées dans un environnement silencieux. Afin d'éviter le bruit, les différences de pression Δp_{max} , tel qu'indiqué ci-dessous, ne doivent pas être dépassées.

La différence de pression Δp_{max} est la plus haute pression admissible au niveau de la vanne, indépendamment de la position de la course, afin de limiter le risque de cavitation et d'érosion. Ces valeurs sont indépendantes de la force du servomoteur. La cavitation accélère l'usure de la soupape de vanne et du siège dans la vanne et génère du bruit. Afin d'éviter une cavitation, la pression différentielle ne doit pas dépasser la valeur Δp_{crit} :

 $\Delta p_{crit} = (p1 - pv) \times 0.5$

p1 = pression primaire avant la vanne (bar)


pv = pression de la vapeur à la température de service (bar)

Le calcul s'effectue avec la pression absolue.

Veuillez noter qu'un dépassement de la différence de pression ∆p_{max} peut endommager la vanne par cavitation et érosion. Dans le cas d'un rappel par ressort, les valeurs Δps représentent simultanément la pression différentielle admissible jusqu'à laquelle le servomoteur assure une fermeture de la vanne en cas d'incident. Étant donné qu'il s'agit d'une fonction de sécurité avec un mouvement « rapide » de la course (au moyen du ressort), cette valeur peut dépasser Δp_{max}.

4/8

Diagramme de débit

1 : contre la pression

Modèle	Δp_V			
	contre la pression			
VUD 015 F320	6			
VUD 015 F310	6			
VUD 015 F300	6			
VUD 020 F300	6			
VUD 025 F300	6			
VUD 032 F300	6			
VUD 040 F300	6			
VUD 050 F	5			

Informations complémentaires concernant le modèle

Corps de vanne en fonte grise selon EN 1563, code EN-GJL-250, numéro de matériau EN-JL 1040 à brides lisses selon EN 1092-2, joint d'étanchéité forme B. Couleur du corps de vanne noir selon RAL 9005 noir foncé. Recommandation pour la bride à souder selon EN 1092-2. Encombrement selon EN 558-1, série de base 1. Joint plat sur le corps de vanne en matériel sans amiante.

Numéros de matériau selon DIN

	N° de matériau DIN	Désignation DIN
Corps de vanne	EN-JL 1040	EN-GJL-250 (GG25)
Siège de vanne	EN-JL 1040	EN-GJL-250
Tige de la vanne	1.4305	X 8 Cr Ni S 18-9
Soupape de vanne	CW 617 W	CuZn40Pb2
Joint de soupape	PTFE	
Presse-étoupe	CW 617 W	CuZn40Pb2

Informations détaillées sur les définitions de différence de pression

Δp_v :

pression différentielle max. admissible sur la vanne pour chaque position de la course, limitée par le niveau sonore et l'érosion.

Cette valeur caractéristique caractérise la vanne, en tant qu'élément parcouru par un courant, spécifiquement dans son comportement hydraulique. La surveillance de la cavitation, de l'érosion et du bruit en résultant permet d'améliorer aussi bien la durée de vie que l'état de fonctionnement.

Δp_{max} :

pression différentielle max. admissible sur la vanne, pour laquelle le servomoteur peut encore ouvrir et fermer la vanne en toute sécurité.

Sont prises en compte : la pression statique et les influences des flux. Cette valeur garantit un mouvement de la course et une fermeture de la vanne sans problème. La valeur ∆p_v de la vanne n'est jamais dépassée.

Δp_s :

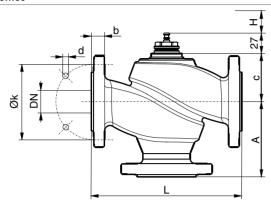
pression différentielle max. admissible sur la vanne en cas de défaut (p. ex. absence de tension, pression et température excessives, rupture de tuyauterie) pour laquelle le servomoteur peut fermer la vanne de manière étanche et le cas échéant, maintenir toute la pression de service contre la pression atmosphérique. Étant donné qu'il s'agit ici d'une fonction de sécurité avec un mouvement « rapide » de la course, Δps peut être supérieur à Δp_{max} ou Δp_v. Les interférences des flux survenant ici passeront rapidement et sont d'une importance mineure pour ce fonctionnement.

Pour les vannes 3 voies, les valeurs ne s'appliquent qu'à la voie de régulation.

Δp_{stat} :

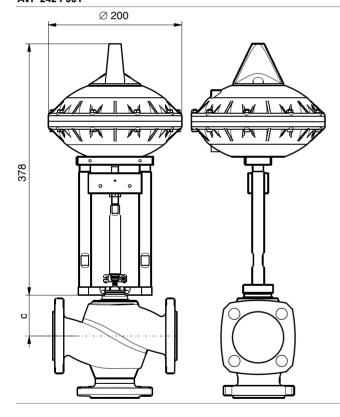
pression de la conduite derrière la vanne. Correspond essentiellement à la pression de repos lorsque la pompe est désactivée, générée p. ex. par le niveau du fluide de l'installation, l'accroissement de pression par le réservoir de pression, la pression de la vapeur, etc.

Pour les vannes qui ferment avec la pression, il faut utiliser pour cela l'addition de la pression statique et de la pression de la pompe.

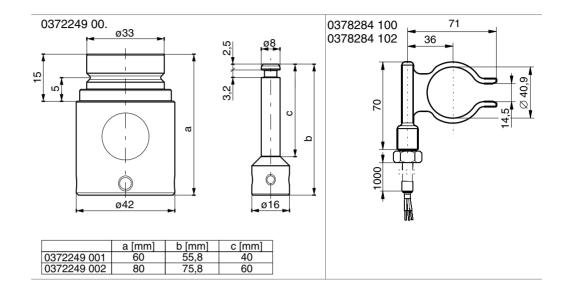

Élimination

Lors de l'élimination, il faut respecter le cadre juridique local actuellement en vigueur.

Vous trouverez des informations complémentaires concernant les matériaux dans la « Déclaration matériaux et environnement » relative à ce produit.


Plan d'encombrement

DN 15...50


VUD, BUD	DN	Α	С	L	Н	k	d	b
015	15	70	41,5	130	8	55	11 x 4	14
020	20	75	48	150	8	65	11 x 4	16
025	25	80	54,5	160	8	75	11 x 4	16
032	32	95	60,5	180	8	90	14 x 4	18
040	40	100	70,5	200	8	100	14 x 4	18
050	50	115	71	230	8	110	14 x 4	20

AVP 242 F001

10.1

Accessoires

Fr. Sauter AG Im Surinam 55 CH-4016 Basel Tel. +41 61 - 695 55 55 www.sauter-controls.com